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In the Lagrangian representation, the problem of advection of a passive marker 
particle* by a prescribed flow defines a dynamical system. For two-dimensional 
incompressible flow this system is Hamiltonian and has just one degree of freedom. 
For unsteady flow the system is non-autonomous and one must in general expect to 
observe chaotic particle motion. These ideas are developed and subsequently 
corroborated through the study of a very simple model which provides an idealization 
of a stirred tank. In the model the fluid is assumed incompressible and inviscid and 
its motion wholly two-dimensional. The agitator is modelled as a point vortex, which, 
together with its image(s) in the bounding contour, provides a source of unsteady 
potential flow. The motion of a particle in this model device is computed numerically. 
It is shown that the deciding factor for integrable or chaotic particle motion is the 
nature of the motion of the agitator. With the agitator held at a fixed position, 
integrable marker motion ensues, and the model device does not stir very efficiently. 
If, on the other hand, the agitator is moved in such a way that the potential flow 
is unsteady, chaotic marker motion can be produced. This leads to efficient stirring. 
A certain case of the general model, for which the differential equations can be 
integrated for a finite time to produce an explicitly given, invertible, area-preserving 
mapping, is used for the calculations. The paper contains discussion of several issues 
that put this regime of chaotic advection in perspective relative to both the subject 
of turbulent advection and to recent work on critical points in the advection patterns 
of steady laminar flows. Extensions of the model, and the notion of chaotic advection, 
to more realistic flow situations are commented upon. 

1. Perspectives in the advection problem 
The problem of advection is traditionally addressed using one of two well- 

established points of view. In  the first of these, the Eulerian representation, the 
advected property is described by a scalar field e(x, t )  which evolves according to an 
equation of the form 

( 1 )  
ae - -k u* V6 = KAO. 
at 

In this equation the advecting velocity field u(x, t )  is a prescribed function of spatial 
coordinates x = (2, y, z )  and time t .  The diffusivity K is frequently taken to be 
constant. The basic equation (1) is obviously linear in 6, a fact that occasionally but 
repeatedly spawns the erroneous conclusion that the field configuration of 8 is at 
worst as complicated as that of u. Indeed, as we shall see later, even a very simple 
and regular flow field u may induce advection patterns that are highly complex. 
Within the framework of (1) we may distinguish laminar and turbulent advection 
according to the nature of the flow field u. Conventionally, theoretical treatments 
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introduce a completely deterministic flow when studying problems of laminar 
advection, whereas studies of turbulent advection, starting with the seminal papers 
by Taylor (1921) and Richardson (1926), only specify the flow field u probabilistically. 

The alternative view of advection is obtained by working in the so-called 
Lagrangian representation. Here trajectories of individual advected particles are 
sought by expressing the problem in the form 

where the components u, v and w of the velocity field u are once again prescribed. 
Equations (2) reduce the advection problem to a finite-dimensional dynamical 
system. For turbulent advection this system is governed by stochastic equations of 
motion. For laminar flow the system (2) is deterministic. Steady laminar flow implies, 
furthermore, that (2) is autonomous. As they stand, (2) pertain to the non-diffusive 
case (K = 0) of (1).  However, owing to the intimate relationship that exists between 
a random walk and diffusion (see e.g. Chandrasekhar 1943), the stochastic version 
of (2) can be constructed to correspond closely with the diffusive case of (1).  In 
this paper we shall be concerned primarily with (2) when u is deterministic, two- 
dimensional, incompressible and unsteady. 

The idea of studying advection by employing the Lagrangian representation 
through (2) is by no means new. In fact, it is an idea intimately related to the 
kinematic foundations of fluid mechanics. A discussion of the relationship between 
Eulerian and Langrangian representations is usually found in an early chapter of any 
textbook on fluid dynamics (see e.g. Lamb 1932, chap. I; Prandtl & Tietjens 1934, 
chap. v;  Batchelor 1967, chap. 2). The main classical result, stated here in ‘modern’ 
terms, is that, if the flow is steady, incompressible and two-dimensional, the 
advection problem (2) is integrable. The well-known argument is, first, that incom- 
pressibility implies existence of a stream function $(x, y), and, secondly, that 
pathlines coincide with streamlines for steady flow. The ‘modern’ statement might 
include the observation that (2) in this case become 

which are just Hamilton’s canonical equations for one degree of freedom and hence 
integrable when autonomous (cf. Whittaker 1937). The terminology of dynamical- 
systems theory might sway one to call the streamlines ‘tori’. This correspondence 
between the phase-space flow of a Hamiltonian dynamical system and the configu- 
ration-space motion of an advected particle (in incompressible, plane fluid flow) 
consists of more than idle formalism. Indeed it suggests a t  once that it must be 
possible to produce instances of (2) (or (3)) with very complicated particle motions 
by choosing the flow field in such a way that the dynamical system becomes non- 
integrable. (For a discussion of non-integrability or chaos in Hamiltonian systems 
see HBnon & Heiles (1964), Arnold & Avez (1968), Moser (1973), Berry (1978) and 
Lichtenberg & Lieberman (1983).) For two-dimensional incompressible flow it will 
suffice to let u and v become time-dependent. In particular, the flow field or the stream 
function need not themselves become very involved. Thus, the regime of advective 
motion that we envision is properly a subclass of laminar advection, and not 
turbulent advection, according to our earlier classification. We have a situation in 
which an innocuous, fully deterministic velocity field, in the Eulerian view, produces 
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an essentially stochastic response in the Lagrangian advection characteristics of a 
passive tracer.t It is proposed to call this situation or regime chaotic advection. 

In the remainder of the paper the possibility of chaotic advection will be 
corroborated through the study of a highly idealized model of the stirring of a tank 
of fluid by an agitator. The ingredients of the model are as follows. The fluid is 
assumed ideal, i.e. inviscid and incompressible, and its motion is completely 
two-dimensional. The tank thus degenerates to a curve delineating the boundary. The 
agitator is modelled as a point vortex. This vortex is bound in the sense that its 
position as a function of time, the ‘stirring protocol’, is part of the data specifying 
the problem. Together with appropriate images in the boundary contour, the vortex 
agitator maintains an unsteady potential flow within the tank. The objective of our 
study will be to discover within this simple model format which features control the 
onset of chaos and hence the efficiency of stirring. 

The model arises naturally from recent work on systems of a few point vortices, 
in particular the so-called restricted four-vortex problem (Aref & Pomphrey 1980 ; 
Ziglin 1980; for a review see Aref 1983), in which the advection of a single passive 
marker particle by three (identical) vortices is studied. The present model distils from 
these earlier investigations the essence of Lagrangian motion in a prescribed potential 
flow. As already anticipated, we shall find that for a steady flow the dynamics of the 
advected particle is integrable; for unsteady flow, on the other hand, non-integrable 
behaviour may ensue. The corollary of this for stirring is that non-integrability leads 
to efficient stirring or mixing. Parameters yielding integrable advected particle 
motion, however, lead to regimes of inefficient stirring. In particular, if the agitating 
vortex in the model is held at  a fixed position, indeed if an arbitrary number of 
agitating vortices are held at  arbitrarily chosen fixed positions, the advecting flow 
field gives integrable particle motion and inefficient stirring. But a single stirring 
vortex allowed to move in an appropriate manner can yield chaotic advected particle 
motion and thus highly efficient stirring. 

In $2 a mathematical formulation of the model is presented and some simple 
analytical properties are derived. Two dimensionless parameters governing the 
problem are identified. In $3 a particular ‘stirring protocol’ is investigated for which 
the motion of the advected particle can be integrated over a finite time, thus reducing 
the ordinary differential equations of $2 to an explicitly given, invertible, area- 
preserving, transcendental mapping. The model is studied by numerical experiments 
in $4. By iterating the mapping for different values of the dimensionless parameters, 
the regimes of regular and chaotic behaviour are identified. Individual particle 
trajectories (pathlines) and a series of simultaneous positions of many particles 
(timelines) arranged to correspond to the stirring of an initial cluster of particles are 
shown. 

A discussion of results appears in $5.  In particular, it is imperative to spend some 
time examining, on one hand, the relationship of this paper to earlier work on stirring, 
advection and entrainment and, on the other, its relation to past and present results 
in the theory of two-dimensional mappings. Extensions of the model as well as 
problems left unresolved by the present investigation are also discussed. 

Brief accounts of the work presented here have been given elsewhere (Aref 
1982a, b ) .  

Related ideas in the context of the ‘ kinematic-dynamo problem’ in hydromagnetics have been 
explored by U. Frisch (private communication), who quotes the early paper by HBnon (1966). See 
also $5.4. 
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2. Mathematical formulation of a model of stirring 
We are going to assume that the bounding contour is a circle of radius a. Extensions 

to non-circular contours are trivially possible and are briefly commented upon in $5.3. 
Using a notational convenience from the theory of point-vortex motion, we shall 
consider the plane of flow to be part of the complex plane (cf. Friedrichs 1966). Let 
the agitating vortex be at  z ( t ) ,  its position as a function of time constituting part of 
the data specifying the problem. The function t ( t )  is what we referred to in $ 1 as the 
stirring protocol. For a circular boundary we have just one image at a2/le(t), where 
the overbar denotes complex conjugation. If the vortex strength of the agitator is 
I‘, the strength of the image is -r. The flow field is now completely specified. 

Into this flow introduce a particle of negligible mass (and vanishing vorticity) a t  
position 5(t) .  Its equation of motion becomes 

This non-autonomous system of two coupled, nonlinear, ordinary differential equations 
defines the model system under study. The first term on the right-hand side of (4) 
gives the advecting velocity of the agitator at the position of the particle, the second 
term is the corresponding quantity due to the image. The apparent singularity when 
z = 0 can be removed by writing (4) as 

A few elementary results about (4) and (4’) may be stated at once. 

PROPOSITION 1 : The system ( 4 )  is  Hamiltonian. 
This follows immediately by noting that, if 

5 = [+ivy 

where 6, 7 are real, then (4) is equivalent to 

with 

We are in essence just restating (3) here. 

PROPOSITION 2 : The evolution governed by ( 4 )  induces a mapping of the disk I cl < a 
onto itself. This mapping is  area-preserving. 

If T is some fixed time interval, the map is 

M : [ ( t )  + [ ( t  + T )  

and the results about M follow immediately from Proposition 1 and Liouville’s 
theorem (cf. Khinchin 1949). In  $3 this mapping will be constructed explicitly for 
a particularly simple stirring protocol z ( t ) .  

PROPOSITION 3 :  The system ( 4 )  is  integrable if (a)  z ( t )  = zo or ( b )  z ( t )  = to exp (iat). 
In case (a) ,  the Hamiltonian H ,  (7),  is independent of time and we have an 
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autonomous system with one degree of freedom which is trivially integrable. In case 
( b )  we set c = zx. Then (4) reduces to 

which is again integrable by an argument similar to that given for case (a).  Note that 
this case contains case (a) (for 51=0) and the case of a free vortex (when 
a = ( r / 2 n )  ( 1 z ~ l 2 - - a y ) .  

It is clear that the above results can be generalized to systems with more than one 
stirrer. If we have stirring vortices at z j ( t ) ,  j = 1, . . . , N ,  with strengths r,, . . . , r N ,  the 
generalization of (4) is simply 

This system is again Hamiltonian. The generalization of (7) gives 

The equations of motion for c are again integrable if z j ( t )  = z,(O) exp (iat) with the 
same 51 for all j = 1, ..., N .  A key point here is that the number of stationary or 
uniformly rotating stirrers is irrelevant as far as integrability is concerned (compare 
$1). As we shall see in 94, it  is the motion of a stirrer - and one is enough - that decides 
whether quasi-periodic or aperiodic (chaotic) particle trajectories are established. 

To conclude this section, let us rewrite the model using dimensionless variables. 
We shall only consider stirrer motions of the form 

where b < a is a constant amplitude and f is a real periodic function with period unity. 
That is, the stirrer oscillates back and forth between + b and - b according to our 
choice of the function f. If we now set 

we get 

where the prime denotes the derivative of Z with respect to its argument. Substituting 
these scaled expressions into (4’), we finally get 

1-pz f2  - dz 
d7 ” (2-pf) (pfZ-  1 ) ’  
_-  

where 7 = t /T and 
b 

P=,, 

The initial value Z ( 0 )  should be chosen within the unit disk 121 < 1.  In the numerical 
work reported on in $4 we have chosen a = 1 and r = 27c such that p = b and p = T .  

Our idealized model of stirring is thus completely parametrized by two dimensionless 
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quantities B and ,u once the ‘design’, i.e. the form of the stirring function f,  has been 
decided upon. The parameter p gives a dimensionless amplitude for the oscillations 
of the agitator. The parameter ,u gives a dimensionless period of its motion. In  $3  
we shall discuss a particularly simple ‘design’. Following that, in $4 we shall 
determine the efficiency of stirring (for that particular ‘design ’) as a function of ,8 
and ,u by numerical experiments. 

3. The case of piecewise-constant stirrer motion 
In  this section we consider the particular case when 

+ b  ( n T , < t < ( n + i ) T ) ,  
- b  ((n+B) T < t < (n+ 1)  T), 

z ( t )  = 

where n = 0, f 1, f 2, . . . , and b and Tare constants. This corresponds to a stirrer that 
jumps back and forth between fixed positions, or equivalently and more practically 
to a design in which two stirrers a t  fixed positions are run alternately for a given 
time interval. 

During the time interval 0 < t < BT the particle motion is governed by the equation 

I r b2-a2 g=- 
2ni ( g - b )  (b[ -a2) ’  

and thus proceeds along an arc of a circle 

where the value of the constant A, 0 < h ,< b/a, is given by C,,, the initial position 
of the marker. The radius of this circle is 

p = - ( - -b )  A a2 
1-h2 b ’ 

b - h2a2/b and its centre is a t  

Q =  l-h2 ‘ 

For h = b/a the centre is at the origin and the radius p = a ,  i.e. the circle coincides 

We can now substitute 
with the boundary. For A+O, p+O and c c + b .  

(16) g = CC+pei+ 

into (12) and obtain an equation of motion for $. A straightforward calculation 
yieldst 2h r i - ~  

4(1--”0S$) = i j $ m j  

which can immediately be integrated to give 

where $ = 0 when t = to .  The function 

t Note that b - &  = hp and (a2 /b ) -Q  = p/A.  
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on the left-hand side of (17) is monotone since h < 1 and its values are thus in a 
one-to-one correspondence with the angle $ through which the advected particle has 
been turned. In  particular A,,($) = $ whenever g5 = p a ,  p = 0, f 1,  f 2, . . . . The period 
of rotation T,, of the particle is given by 

(the dependence of p on h is given by (14)). Hence (17) is equivalent to the relation 

AAA(#) = 2aAt/TA (20) 

which gives the change in A,,($) during the time interval At. 
A simple algorithm can now be stated which yields the position Ct of an advected 

particle at time t < 4jT given its position co at  time t = 0. In  accordance with (13) we 
first calculate h from C,, (and the values of a and b ) .  We can then determine 5, from 
(15), and thus p and & from 

p ei#o = flo - Q 

(cf. (16)). Next we use (20) in the form 

AA($t) = Ah(g50) + 2nt/T,, (21) 

where Ah($O) is obtainedfrom (18) and T,, from (19). Equation (21) can be inverted - in 
practice by Newton’s method - to give the polar angle, and finally then 

Ct = cc+pei#t. 

We shall use this algorithm for t = ?jT. 
During the next half-cycle +T < t < T the stirring vortex is at z = - b,  and a 

similar calculation can be carried out to find cT in terms of {iT. It is, however, more 
convenient to observe that gT can be obtained byjirst inverting CiT to obtain -hT, 
secondly evolving -ciT to -gT, using exactly the procedure just found when the 
stirrer is a t  z = + b ,  and thirdly constructing Yrr from -ST by another inversion. 
Figure 1 shows several sample trajectories, and in one case the points Q, [iT and cT 
on a trajectory obtained by way of -QT and -cT and the construction just 
described. We shall return to this construction and its significance in $5.1. 

4. Numerical experiments 
We now proceed to study the model of $3 by numerical computations in order to 

demonstrate the onset of chaotic motion and determine the relevant parameter values 
for this phenomenon to occur. The simplest way to do this is to iterate the mapping 
of Proposition 2 for a given set of initial marker positions and different parameter 
values. The time interval T in Proposition 2 will now be taken equal to the period 
of z ( t )  in $3. As mentioned earlier (see the end of $2) we shall assume r = 2a, a = 1 
so that /3 = b and p = T. 

Figure 2 shows some of the results. For all cases /3 = 0.5 and apparent qualitative 
differences result from varying the time interval p ( = T). The initial marker positions 
were in all cases as follows : nine markers uniformly spaced along the positive y-axis ; 
six markers placed on the x-axis at x = kO.05, f0.2,  k0.35. For the smallest values 
of p we see that the iterates fall on a family of level curves. The general shape of these 
curves can be understood by considering the advection due to twojixed, continuously 
operating vortex agitators, one at z = +0.5, the other a t  z = -0.5. The steady flow 
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FIQURE 1 .  Sample particle trajectories for the model stirring device of $3. Parameters are /3 = 0.5 
and p = 1.5 (a-d) or 0.5 (e,f). The construction discussed at the end of $3  and in $5.1 is illustrated 
in panel (a) .  Crosses indicate agitator positions. 

generated in that case gives an integrable advected marker dynamics with pathlines 
and streamlines coinciding. This system of streamlines is shown in figure 3. It is clear 
that as T+O (for fixed b ,  a and r )  the model of $3  will look more and more like the 
two-fixed-agitator system; hence the similarities between figure 3 and figure 2 (a) .  In 
fact, one may view the particle positions a t  times 2742’) and (2n- 1)  (BT), where n 
is an integer, as the odd and even sets of coordinates in a ‘leapfrog’ scheme (with 
timestep BT) aimed at integrating the problem with two fixed stirrers numerical1y.t 
Thus one would expect ‘convergence ’ as T+O. It is not implied by this that the chaos 
‘goes away’ at some small but finite value of T. Rather, current ideas indicate that 
the size of the chaotic region goes to zero as exp ( - const/T) for T+O. (The analogy 
also allows one to interpret the onset of chaos at larger values of T as a realization 
of the numerical instabilities to which the leapfrog scheme is susceptible at  large 
stepsize. Similar interpretations appear in the recent work by Yamaguti & Oshiki 
(1981). However, for our present purposes this is a digression.) 

t I am indebted to L. N. Howard for this remark. 
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FIGURE 2. Iterated-map results described in 94. Parameters are B = 0.5 and (a) p = 0.05; ( b )  0.10; 
(c) 0.125; (d )  0.15; ( e )  0.20; (f) 0.35; (9) 0.50; (h)  1.0; (i) 1.5. Crosses indicate agitator positions. 

As ,u (or T) is increased, the innermost trajectories become erratic and the regular 
pattern of level curves is disrupted. As figure 2 shows, this disruption or instability 
to chaotic motion sets in when ,u = 0.1 and continues to consume a larger and larger 
portion of phase space, until a t  ,u = 1.5 no trace of regularity can be seen. It should 
be emphasized that for every value of ,u we are simply iterating an explicitly given 
mapping for a predetermined number of steps. Hence increasing the value of ,u does 
not increase the computational effort nor the reliability of the plotted points. (The 
accuracy to which the points are known is several orders of magnitude larger than 
the resolution of the plotter.) This is, of course, just a restatement of the standard 
advantages of a mapping over actual time integrations of differential equations. In 
a physical problem one commonly starts with a set of differential equations, such as 
(4), and it is sometimes difficult to specialize these equations so that an explicit 
analytical mapping emerges. One is then left with the option of constructing maps 
that reeemble the system under study in some qualitative way, a procedure that has 
led to many important results, but which, clearly, from the point of view of any 
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FIGURE 3. Streamlines for a device with two fixed agitators operating continuously. Agitators 
(indicated by crosses) are a t  z = +0.5a, where a is the tank radius. 

FIGURE 4. Phases in the stirring of an initially square array of particles. Parameters are B = 0.5, 
,u = 1.0. Panels shown are a t  times (a) t = 0; ( b )  1; ( c )  2; (d) 3; (e)  4; (f) 5;  (9)  6; (h)  9; (i) 12. 
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FIQURE 5. Phases in the stirring of an initially square array of particles. Parameters are /3 = 0.5, 
,u = 0.1. Panels shown are at times (a) t = 0; ( b )  1 ;  (c) 2; (d )  3;  (e) 4; (f) 12. 

particular application leaves room for doubt about the relevance of the map results 
to the actual system. Here the reduction to a mapping is achieved by specializing 
the motion of the agitator to the non-differentiable alternating motion described in 
$3. For additional discussion of the relationship between differential equations 
(‘flows’) and maps see Lichtenberg & Lieberman (1983) and references therein. 

It is important to realize what is being shown in figure 2 from the viewpoint of 
our intended application. If we calculate a fixed number of iterations, say 2000 (as 
is indeed done in figure 2 ) ,  we are considering 2000 x 0.05 = 100 time units in figure 
2 ( a )  but 3000 time units in figure 2 ( i ) .  In other words, in real time the ‘stirring 
experiment ’ of figure 2 (a)  is essentially over before that in figure 2 (i) has progressed 
substantially. What figure 2 shows us is that the nature of the stirring process for 
T = 1.5 is very different from that for T = 0.05. Indeed, if we take a blob of marked 
fluid and follow it as it is stirred, the parameters in figure 2 (a )  will lead to a predictable 
band (bounded by two streamlines in essence) within the tank wherein all this marked 
fluid may be found for all time. This is clearly not a very efficient way to operate 
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a stirring device. The parameters for figure 2(i) ,  on the other hand, will lead to 
efficient stirring in the sense that marked particles may be found ‘everywhere ’ in the 
tank after only a few stirring periods. As described below, numerical experiments 
show that on the order of 10 periods suffice. This result is in some ways counter- 
intuitive, since the more vigorous turning on and off of the two agitators (small T )  
might have been suspected of being the most efficient mechanism. 

We now consider precisely this kind of stirring experiment which one would want 
to realize in a real device. We introduce a blob of fluid into the tank a t  time zero 
and watch it evolve. Figure 4 shows phases in the stirring of an initially square array 
of 10000 marker particles for the case /3 = 0.5, ,u = 1.0. The time elapsed between 
one frame and the next is one time unit (T = ,u = 1.0). We see that after about six 
time units the particles of the square have been distributed over a regiont of the tank 
of size roughly comparable to the chaotic region seen in figure 2 ( h ) .  From t = 6 to 
t = 12 the stirred blob is ‘homogenized’ over this region. Now compare this sequence 
of events to figure 5, which shows the same initial condition and geometry but with 
the agitation period set to ,u = T = 0.1, i.e. well inside the predominantly integrable 
regime (cf. figure 2 b ) .  The frames in figure 5 are at the same instants in real time 
as those of figure 4, i.e. we have waited for 10 stirring periods between one frame and 
the next. The configuration of advected particles at the final time in figure 5 is 
markedly different from that in figure 4. Although in figure 5 the particles have 
obviously been stirred about, they have not been able to wander throughout an 
extended region as in figure 4. They are, to use the terminology of the theory of 
dynamical systems, ‘trapped between the tori of Kolmogorov, Arnold and Moser ’ 
(cf. Moser 1973; Berry 1978), and the model device does not stir effectively. The 
iterated maps in figure 2 clearly provide a useful diagnostic as to when the stirring 
device will be ‘efficient ’ in the more traditional sense of figures 4 and 5.  Similar runs 
were performed for ,u = 2 and ,u = 3. Again efficient stirring is seen with a larger 
stirred region as ,u increases (see figure 6). 

A number of runs of the type shown in figure 2 were performed for different values 
of the two dimensionless parameters p and ,u (always keeping r = 2x and a = l) ,  and, 
from the subjective impression created by the resulting images, each parameter pair 
was classified as leading to integrable (I), transitional (T) or chaotic (C) stirring. For 
example, for the sequence in figure 2 the value ,u = 0.05 was assigned the letter I, 
,u = 0.10, 0.125 the letter T and all ,u 2 0.15 the letter C. Collecting the assignments 
from all runs performed produced figure 7, which gives a crude indication of how the 
parameters should be chosen in order to achieve one of the three regimes listed. A 
couple of features of this figure are worthy of note. We have already remarked on 
the fact that integrability prevails as T-tO for fixed p. One might have suspected 
to find integrability as T+ 00 for fixed p. This does not seem to be the case. If one 
is willing to wait long enough, efficient stirring will indeed take place. Keeping T (and 
hence ,u) fixed we see that the system apparently is nonintegrable for sufficiently small 
p. This results from the fact that the model of $ 3  without the circular boundary shows 
a transition to chaotic behaviour as we shall discuss in $5.2.  Finally as p-t 1 for fixed 
T the agitator and its image fuse, and one tends towards a state of no motion for 
all time. 

We may construct a plot describing the onset of chaotic advection by measuring, 
again in a crude way, the size of the chaotic region for different values of the 

t It is important to repeat that the mapping that led from figure 4(a) to figure 4(i) is 
area-preserving. For qualitative insights into the fate of a curve, e.g. the boundary of a certain fluid 
region, as it is stirred, see figure 10, which is discussed in $5.2. See also Aref & Tryggvason (1984). 
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FIGURE 6. Phaaes in the stirring of an initially square array of particles. Same initial state as in 
figures 4 and 5. Parameters are /3 = 0.5 and ,u = 2.0 (a-d) or ,u = 3.0 (e-h). Panels shown are a t  
times (a) t = 2;  ( b )  4;  (c) 6; (d) 12; (e) 3;  (f) 6; (9)  9;  (h)  12. 
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FIQURE 8. Growth of the size of the region displaying chaotic advection 
with p for several values of p. 

parameters. Figure 8 displays data of this type. The chaotic region was considered 
to be elliptical (cf. figure 2) and its minor and major axes were measured directly. 
In figure 8 we plot the product of these axes against the parameter p for fixed 1. A 
similar plot appears already in the investigation by HBnon & Heiles (1964). In our 
units the ordinate in figure 8 is the fraction of the area of the tank that is ‘well stirred ’ 
for given parameters.7 

We see that the rate at  which the interior of the tank yields to chaotic orbits, i.e. 

t This plot was suggested by J. B. Keller. 
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FIQURE 9. An ‘island’ of regular advection emerges within the chaotic 
region for j3 = 0.1, p = 4.0. 

the slope of the curves in figure 8, depends on P. Clearly, from a practical point of 
view, one would wish to achieve a large region of chaotic advection at as low a value 
of T as possible (for fixed a and I“). For the stirring protocol of $3 the slopes in figure 
8 increase as /3 is increased. However, for P 2 0.7 the agitator is closer to its image 
than it is to the other agitator and the ‘Poincar6 section’ changes character. The 
chaotic region becomes much more diffuse and its topology is now rather complicated. 
The crude measure used for figure 8 is no longer adequate. These remarks explain 
the restriction to P < 0.7 in figure 8. 

It should also be mentioned that for small P and large p regular ‘islands’ will 
sometimes re-emerge within the chaotic region. A very pronounced example is shown 
in figure 9, where P = 0.1, p = 4.0. A stable fixed point of the mapping has appeared, 
by symmetry on the y-axis, and a large neighbourhood of this fixed point consists 
of regular orbits. The small open patch on the y-axis in the lower portion of figure 
2 (i) is presumably the same phenomenon. The patch grows to about four times this 
size for p = 2.0 but has disappeared at p = 2.5. Regular ‘islands’ of this kind were 
ignored when generating figure 8. 

5. Discussion 

model and to the numerical results obtained. 
In this section we consider a number of issues relating to the formulation of the 

5.1. Connection with the theory of mappings 

As we have seen in the model of $3, a particle trajectory will consist of a sequence 
of circular arcs. Let R+(p,P) denote the operator that performs the appropriate 
rotation about the stirrer position at  + b. Thus the first part of a trajectory starting 

(22) 
at Q results in a point 

where the notation signifies that R+ depends on parameters p, /3 and operates on c,,. 
Similarly we could introduce an operator R-(p, P )  to perform the rotation about the 
stirrer position - b. Then after a full period T the point Q would have moved to 

c, = R+cu,P) co, 

Q = R-(p, PI 61 = R-(p, PI R+(p, P)  co. 

From now on we shall drop the arguments p, /? of R, . The construction mentioned 
at the end of $3  and illustrated in figure 1 amounts to the algebraic statement that 

c 2  = IR+IR+CO, 
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where I is the inversion in the origin : 15 = - 5. Thus for the full mapping M = R- R, 
(cf. Proposition 2) we have the result 

M = (IR+)2, (23) 

i.e. M is the second iterate of IR,. This map IR,, then, is really the basic entity in 
our problem. 

As with all Hamiltonian maps IR, (and thus M = (IR+)2 itself) is reversible (Greene 
et al. 1981), which means that it can be written as a product of two involutions. It 
is not difficult to see explicitly how this comes about for the mapping IR,. Consider 
the mappings S, and S,, which are the reflections in the x- and y-axes respectively: 

s,y= g, s,y= -g. 
Now it is easy to see geometrically that 

Thus 

where, trivially, S i  = 1 and 

We have used (24) and the fact that I = S,S,( = S,S,) in this derivation. It is possible 
to proceed with the theory of fixed points along the lines established in the literature 
(Greene et al. 1981), although the existence of a singularity (at + b )  within the 
mapping domain creates some differences and difficulties. It is likely that scaling 
properties may be found for these model stirring devices following the recent work 
of Kadanoff (1981) and Shenker & Kadanoff (1982). Such developments may be 
somewhat more detailed than warranted by the present application. 

5.2.  The case of no boundary 

If we simply ignore the bounding contour, we arrive at a very simple, explicitly given 
mapping.i Let the vortex positions still be & b .  Then the speed of a particle starting 
at yo will be r /2n  I c0 - b 1 ,  and in time 4T it will traverse a circular arc of angular spread 
TT/4n I c0 - b l2 centred on the point + b. Hence, with the notation employed in $5.1, 

then (25a) becomes 
i@ 

2, = l+(Zo-1)exp 
1.55,- 112' 

which according to the results in $5.1 is to be followed by an inversion 2, = -Zl. 
Thus in this simplified case we have reduced the problem to the study of a 
one-parameter map 

a: z+z, 
where i@ 

Z ' =  -l+(l-2)exp- 
11 -212' 

t This first arose in a discussion with L. Merkine and J. T. C. Liu. 
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Numerical experiments with this explicit mapping show that it begins to display 
‘large-scale’ chaotic behaviour whenp = ,Zc x 0.35. Note that in terms of our earlier 
variables p and B 

Thus in the plot in figure 6 we must expect that the boundary between points marked 
T and points marked C converges to a parabola p = 2,GcP2 as B+O. This is not 
inconsistent with what one actually finds, but the plot is too crude to check the 
relation sensitively. 

The system considered here is presumably the simplest possible model in which 
chaotic advection (as defined in this paper) can be found. The explicit map (26) allows 
us to understand qualitatively the results of figure 2. For particles started very close 
to one of the agitators the dominant effect is the rotation by that agitator. The system 
with one agitator is, of course, integrable (even if the agitator is switched on and off), 
and the chaotic patches surrounding the agitators in figure 2 must come about from 
the perturbation of this one-agitator system by the distant second agitator. The 
situation is reminiscent of the perturbed twist-map theory of Moser (1973 ; see also 
Arnold & Avez 1968; Berry 1978), except that in the present system the rotation angle 
for the unperturbed case diverges as the singularity is approached. On the other hand, 
the evolution of chaos around the saddle point at the origin (cf. figures 2a, 3) and 
the general broadening of the separatrix (‘figure of eight ’) streamline should 
undoubtedly be understood in terms of the theory of homoclinic points belonging to 
a hyperbolic fixed point (see Moser 1973; Berry 1978). Aspects of this process are 
computable using the Melnikov technique described by Holmes (1980) and by Holmes 
& Marsden ( 1 9 8 2 ~ ’  b ) .  

In a noteworthy digression in their study of ‘quantum maps’, Berry et al. (1979) 
have actually already described, qualitatively, the different types of advection 
pattern presented here. They introduce the terminology of ‘whorls ’ and ‘tendrils’, 
the former being associated with the vicinity of an elliptic fixed point, the latter with 
hyperbolic fixed points. To see these ‘structures’, consider the advection of a line of 
marker particles. Close to an elliptic fixed point, tightly wound spirals should appear 
owing to the difference in winding rate with distance from the fixed point. Examples 
of such spiral structures may be seen in the early stages of the sequences in figures 
4 and 6. ‘Tendrils’ are the undulations that one should see as a line of marker is 
advected past a hyperbolic fixed point. They arise from the sinuous nature of the 
stable and unstable manifolds intersecting at an infinity of homoclinic points. Figure 
10 provides four examples. A line down the middle of the tank (along the y-axis) 
consisting of 20000 particles was initialized and stirred. As it advects by the centre 
of the tank, the tendrils are clearly evident. The amplitude of the tendril oscillations 
increases with p so that at  p = 0.5 the tendrils in the centre of the tank and the 
‘whorls’ about the agitators are inextricably bound together in a complex pattern. 
The evolution of tendrils on a closed contour and their influence on the degree of 
stretching of such a curve are elucidated in Aref & Tryggvason (1984). 

We conclude by quoting from Berry et al. (1979): ‘A typical [line of particles] may 
pass close to several elliptic and hyperbolic fixed points. . . and will therefore evolve 
into a fantastic shape incorporating both whorls and tendrils. . .Its curlings and 
flailings are reminiscent of cream spreading on coffee, and suggest that the study of 
generic area-preserving maps of curves on a plane, or surfaces in space, might be a 
profitable way to study turbulent mixing. . . ’ 

z = P P P .  
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FIGURE 10. Evolution of ‘tendrils’ on an advected line of marker particles. For all cases p = 0.5, 
t = 2 and (a)  ,LA = 0.1; (a) 0.1; (c) 0.4; ( d )  0.5. Note the ‘whorls’ in panel (c). 

5.3. Non-circular boundary 

We have already mentioned that the main virtue of a circular boundary is that it 
requires just one image for the stirring vortex. This property leads also to the result 
that, if the stirring vortex is a free vortex, thus precessing around inside the boundary 
a t  constant angular velocity, the advection problem is integrable. This situation, viz 
that the advection by a single free vortex in a bounded domain is an integrable 
problem, is probably restricted to the case of a circular boundary. We believe, as first 
conjectured by Novikov & Sedov (1979; see also Novikov 1980; Aref 1983), that for 
a ‘general’ boundary, advection by a single free vortex is chaotic. This conjecture 
has not so far been checked (much less proven). We suggest that advection in a 
rectangular ‘container’ with a free vortex would be an interesting problem. Putting 
fins and baffles on the inside of the circular boundary may also lead to relevant 
insights. 

5.4. Effects of viscosity, three-dimensionality etc. 
A number of objections (absence of viscosity, restriction to two-dimensionality etc.) 
can be raised to the simple model considered here when compared with realistic 
stirring devices. We shall completely exclude situations where a turbulent flow field 
is used as the agent of stirring and mixing since the type of flow we are considering 
is clearly to be classified as laminar. Indeed our flow is entirely deterministic (as 
emphasized in $1) ,  whereas turbulent flows, used for advection or otherwise, are 
described stochastically. 

We remark that it is possible to give examples of chaotic particle advection for 
a three-dimensional steady, incompressible, inviscid flow, i.e. the ‘constraint ’ that the 



Stirring by chaotic advection 19 

advecting flow satisfies dynamical equations does not appear strong enough to rule 
out chaotic advection (in general) and in three dimensions steady flows suffice. HQnon 
(1966), following a suggestion by V. I. Arnold, studied the advection problem 

I 
J 

x = Asinz+Ccosy, 

y = Bsinx+Acosz, 
i = Csiny+Bcosx 

for A = 4 3 ,  B = 1/2, C = 1.  For any values of the constants A,  B, C the incompressible 
flow on the right-hand side of (27) is a steady solution of the three-dimensional Euler 
equation. HBnon’s (1966) numerical results indicate regions of chaotic behaviour for 
the advection which should translate into efficient stirring and mixing. For a recent, 
highly mathematical study of related advection problems see Broer (1981). 

The effects of viscosity present us with somewhat more complicated problems. 
Basically a neiv physical entity, the kinematic viscosity v, would be introduced. We 
then have a new dimensionless quantity r / u ,  which turns out just to be the Reynolds 
number written in a somewhat unconventional form. Our analysis in the preceding 
sections might then be expected to apply in the limit v < r. However, we recall that 
the steady viscous flow about a uniformly rotating cylinder in unbounded fluid has 
precisely the same form as the flow produced by a line vortex coincident with the 
axis of the cylinder. Furthermore, the rapidity with which the steady state is achieved 
increases as the fluid becomes more viscous, as does the rate at which a circulatory 
motion is damped once the cylinder stops rotating. These remarks suggest an 
approximate realization of the model device of $3  using two cylinders, that are set 
into rotation alternately, and a rather viscous fluid. This reminds one of the device 
used by Taylor (1972) in his film to demonstrate reversibility of low-Reynolds-number 
flow. The two-cylinder device would, of course, be reversible in principle (just as the 
mapping in the model is reversible) but, because of the nonintegrability of particle 
motion and the consequent sensitivity to slight variations in particle position, it 
would probably be impossible to unscramble a stirred blob of coloured fluid after even 
a few periods by turning the cylinders backwards. This behaviour could then be 
contrasted with Taylor’s (1972) demonstrati0n.t 

5.5. ‘Entrainment diagrams ’ 
The idea that concepts of dynamical-systems theory, such as critical points and their 
bifurcations, are useful to the analysis of real-space flow patterns has been promoted 
by Perry & Fairlie (1974) and more recently by Cantwell (1981a, b ) .  The idea is not 
unnatural, since, in fact, the names used in the theory of dynamical systems for 
various singularities of phase-plane flows were originally derived from hydrodynamic 
terminology (viz source, sink, vortex, the interpretation of Liouville’s theorem as a 
statement of incompressibility of phase-space flow, etc.). The work just mentioned 
is aimed at  Lagrangian characteristics of the advected particle motion (as is this 
paper). However, it is concerned with situations in which the advection problem can 
be reduced to an autonomous system consisting of two coupled ordinary differential 
equations. This is achieved by invoking flows with particular symmetries, e.g. 
axisymmetry, and also by making use of similarity properties of the solution. Thus, 
in particular, the flows analysed by Cantwell (1981 a, b ; see also Cantwell, Coles & 
Dimotakis 1978, in particular the Appendix) need not be steady (in the usual sense) 

t This paragraph was influenced by remarks of T. Maxworthy after the presentation in Aref 
(19826). A two-cylinder device actually appears in figure 163 of the early treatise by Bouasse (1931). 
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but by adopting certain similarity variables the equations of motion for a particle 
are reduced to the aforementioned form. Critical points of the flow pattern are now 
identified, and their bifurcations as the Reynolds number is varied are studied. 
Cantwell (1981a) has introduced the term entrainment diagrams for the ‘phase 
portraits ’ that ensue. 

The present investigation is in many ways closely allied to this work. However, 
a principal result in this paper is that two-dimensional ‘steady’ (in a broad sense, 
i.e. including the possibility of similarity variables) advection and two-dimensional 
unsteady advection are radically different processes. The former is integrable, the 
latter, in general, is not. In  this sense the results presented here are complementary 
to those of Perry & Fairlie (1974) and Cantwell (1981a,b), and show that the 
entrainment diagrams should be considered very special cases of particle advection, 
just as laminar solutions of the Navier-Stokes equations form but a small and 
specialized subset of all solutions, the preponderance of which correspond to 
turbulent flow. An important point is that for the advection problem chaotic solutions 
need not correspond to turbulent flows. Very regular flows (in the sense that the 
Eulerian field has a simple time dependence) can lead to highly irregular advection 
patterns. One has no notion of this from the entrainment diagrams. 

This remarkable contrast between the Eulerian and Lagrangian representation of 
the same flow was apparent to Amsden & Harlow (1964), while performing numerical 
simulations using the particle-in-cell method where particles are advected in a 
prescribed flow known at the sites of a grid. They refer very aptly to ‘the relative 
orderliness of Eulerian representation over Lagrangian ’. Interpretations of flow- 
visualization pictures face this problem routinely. Given the marker dispersion in 
figure 4(i)  the problem is to determine the source(s) of agitation. In  general, owing 
to chaotic advection, this inverse problem is impossible to solve! 

I am indebted to N. Pomphrey for discussions on the restricted four-vortex 
problem that is so intimately connected with this work. I also wish to thank 
E. P. Flinchem, D. Q .  Larkin and G .  Tryggvason for constructive comments. 
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